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Abstract 

The main objective of this work is to investigate fast pyrolysis of fiber and plastic 

feedstocks in order to understand the synergistic effect from their co-pyrolysis.  In this on-

going work, fiber, plastic and their blend are characterized and pyrolysis oil is produced 

from them in the fast batch pyrolysis reactor.  Based on a heat transfer model it is shown 

that results of oil produced from batch reactor will be applicable to the continuous paddle 

reactor.  From feedstock characterization, chlorine was observed particularly in the plastic 

feedstock. Thus, chlorine removal method using torrefaction and high shear mixing was 

implemented and was found to be effective for chlorine removal.  

The fiber and plastic pyrolysis oils produced in the batch reactor were characterized 

in detail using analytical techniques like GC-MS, FTIR, ESI-MS and HPLC to investigate 

the various compounds.  It was found that pyrolysis oil produced from fiber/paper showed 

two different fractions with top fraction mostly consisting of cellulose and bottom fraction 

consisting of lignin.  For pyrolysis oil from plastic, it was found that it had 60-65% 

compounds like the diesel fuel. 
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1 Introduction 

1.1 Motivation 

The continuously increasing demand for energy, the declining fossil fuel deposits, 

national security, and environmental issues such as global warming and higher air pollution 

levels demand the shift towards renewable fuels.  We, as engineers, need to develop a 

cleaner, safer, sustainable, and renewable alternative for fossil fuels.  Conversion of non-

food biomass feedstock has been proposed for the generation of such fuels using 

thermochemical processes [1]. 

Thermochemical conversion to produce various fuels can be achieved using various 

pathways like torrefaction, pyrolysis, and gasification [2].  Of which, fast pyrolysis is a 

special pathway that attracts significant attention as it results in a liquid fuel with high 

energy-density.  These liquid fuels can be produced from largely abundant feedstocks like 

municipal solid wastes (MSW), forest thinning biomass, and agricultural wastes [3–5]. As 

per 2016-billion-ton report, an abundance of these feedstocks can be seen from fact that 

availability of biomass just from agricultural and forest resources was about 343 million in 

2017 which is predicted to rise to 1.2 billion tons by the year 2040 [6].  If the energy crops 

like soybean, cottonseed and sesame are included as feedstock, they will add another 411 

million tons by 2040 [6], totaling ~1.6 billion tons.  These statistics of the abundance of 

feedstock suitable for fuel production process, encourage their thermochemical conversion. 

From the regulation perspective, energy independence and security act (EISA) 

developed to promote the use of domestic biofuel and to mitigate oil pricing, published 

renewable fuel standards (RFS-2) in the year 2007.  This RFS-2 standards not only 
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expanded the quota for use of renewable fuels from 7.5 billion gallons (2012) to 36 billion 

gallons (2022) but also put restrictions on types of bio-fuels allowable in the quota.  This 

caps the share of conventional biofuels derived from conventional feedstocks like corn to 

15 billion gallons [7] and mandates the share of advanced biofuels to be increased to 21 

billion gallons with at least 50% reduction in greenhouse gases.  Of these 21 billion gallons 

of advanced biofuels, 16 billion gallons should be from cellulosic sources.  In addition to 

RFS-2 standards, states like California under California code of regulations (Title 17) have 

adopted their own stringent norms for fuel sources, mandating 3% of fuel to be from low 

carbon sources by end of 2017 and minimum of 10% reduction in carbon intensity for fuels 

to be sold after 2020.  Conforming to all these norms and goals of large fuel production 

require significant advancement in technology for thermochemical conversion. 

Apart from the regulations, US is now facing the challenge of ever-increasing 

amount of plastic waste being accumulated in landfills due to the changing lifestyle over 

years.  For the last several decades, it was shipped to China [8].  However recently, the 

Chinese Ministry of Environment and Environmental Ministry of Commerce, declared that 

the country will stop receiving the 24 types of solid wastes which will be extended to 

several more by 2019 [9].  This will induce a severe stress on the waste management 

industry that has no real solution to address the issue.  Pyrolysis of these diverse types of 

plastics with biomass wastes together to produce liquid fuels using a process called co-

pyrolysis can be a promising option as it also resolves associated challenges like plastic 

separation or plastic-biomass separation that can be expensive and labor intensive. 
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Out of the above potential types of feedstock, we selected to study municipal based 

solid wastes, mostly plastic, and fibers.  As per statistics, the amount of fiber and plastic 

wastes recovered in the U.S. per annum are 50.8 million tons [10] and 33.25 million tons 

[11] respectively.  Based on a 50% mass yield, these two waste streams together could, in 

principle, produce 15.1 billion gallons of liquid transportation fuels [12,13]. 

1.2 Background 

Pyrolysis is the thermochemical process of degradation of biomass or waste by 

subjecting it to temperature range ~ 500 °C in the absence of oxygen [14].  This process 

results in the formation of fractions in solid, liquid and gas phase; the solid fraction is often 

referred to as biochar.  The liquid fraction obtained by condensation of the pyrolytic vapors 

results in liquid and is referred to as bio-oil or pyrolysis oil.  This bio-oil should be 

upgraded in an oil-refinery or bio-refinery for the use of transportation fuel [15–18].  It can 

also find its direct use as fuel for boiler burners [19].  The vast majority of pyrolysis studies 

dealt with biomass as the feedstock.  It has three main components, hemicellulose, 

cellulose, and lignin.  One of the feedstocks that we will study is fiber waste, which is 

mostly cellulose.  We will discuss very briefly in this section biomass pyrolysis as it also 

relates to the degradation of cellulose.  The next section will be devoted entirely to 

pyrolysis of fibers and plastics. 

The products distribution from biomass pyrolysis process is largely dependent upon 

the heat transfer rate [14,20] and the operating conditions such as temperature and the 

residence time [2,21] as summarized in Table 1.  The table shows the liquid, solid, and gas 

yields from slow and fast pyrolysis.  Slow pyrolysis occurs at <400 °C and has a very slow 
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heating rate of a few degrees per minute yields very low liquid product (~30%), with large 

water content, very high char yield (~35%), and very high gas yield (~35%).  On the other 

hand, fast pyrolysis requires heating rates of >10 °C/s with liquid yields of up to 75% (with 

low water content), low char yield (~12%) and low gas yield (13%).  In fast pyrolysis, the 

liquid production will spend short residence times (~ 2 sec) to avoid secondary reactions 

[20] before condensation.  Clearly, slow pyrolysis is highly desirable for obtaining quality 

liquid product and high yields.  The pyrolysis community is thus converting organic 

feedstock by fast pyrolysis only.  

Table 1 Typical parameters and product yields for different types of pyrolysis [20,21]. 

Type  Temperature (°C) Residence 
time (s) 

Typical Yields (%) 
Liquid Char Gas 

Slow pyrolysis >400  hundreds 30 (~70% water) 35 35 
Fast pyrolysis ~500 10-25 75 (~25% water) 12 13 

 

Bio-oils composition resulting from fast pyrolysis process can be composed of 

different molecules of various sizes derived primarily from the process of depolymerization 

of three key building blocks of biomass namely cellulose, hemicellulose and lignin [22].  

The exact composition is dependent on various factors like the temperature of fast pyrolysis 

process, heating rate, vapor residence time and the type of feedstock used [20,22–24]. 

According to Mohan et al. and Branca et al. [25,26]  pyrolysis oil (bio-oil) is a complex 

mixture of a variety of around 300 compounds.  However, majority of authors [22] report 

only a few major compounds like acetic acid, formic acid, propanoic acid, 2-furaldehyde, 

levoglucosan, glucose, xylose, methyl-cyclopentenone, methanol, phenol, butanedial, etc.  

It is reported that acetic acid is a principle acidic compound observed in the bio-oils and 
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furfural and furfural-alcohol are major furan products observed.  Most of these compounds 

are the product of fiber pyrolysis as well.  

Because of such large variety in compounds stated above, various analytical 

methods are used to characterize the bio-oil.  Chemical characterization of oil is done based 

on the chemical functional groups with the use of solvent extraction, molecular distillation, 

etc.  More advanced chemical characterization methods like GC-MS, TIC, HPLC, GPC are 

used to focus on different aspects needed for the study [26–29]. 

1.3 Literature review 

This work focuses on pyrolysis of solid waste blends that comprise fiber and plastic 

materials.  The fiber being mostly cellulose with some minerals as fillers [30] and the 

plastic being a large number of plastic polymers.  In the research, we will study each of the 

components separately (i.e., fiber and plastic alone) and their blends.   

There are few studies on pyrolysis of fibers, plastics, or their blends [3,31].  Out of 

these limited studies, there are fewer pyrolysis studies on fiber-plastic blends – referred to 

as co-pyrolysis.  During co-pyrolysis, the presence of synergistic effects between different 

wastes has been implied recently by researchers [32,33].  If synergistic effects are absent 

between fiber and plastic, the yield and properties of the various components should be the 

weighted sum of the two reactants.  However, the actual yield from the co-pyrolysis may 

be different, if it is below the average, it is negative synergy, if it is above the average it is 

positive synergy.  

Synergistic effect has been studied mainly in two categories: (i) type of pyrolysis, 

and (ii) catalytic pyrolysis.  The current literature review focuses mostly on non-catalytic 
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type slow and fast co-pyrolysis of fiber (cellulosic) with different types of plastics.  

However, as cellulose (fiber) is a major component of biomass, which has a primary 

structure of two β-glucopyranose units linked by β-1,4-glycosidic bonds [34], a few 

references to biomass-plastic co-pyrolysis are also used in order to understand cellulose-

plastic synergy.   

The following paragraphs deal with slow co-pyrolysis: Sharypov et al. [32] 

experimented with co-pyrolysis of various biomass-plastic combinations using biomass 

feedstocks of pine, cellulose, and lignin with plastic feedstocks of medium density 

polyethylene (MDPE), atactic polypropylene, and isotactic polypropylene in an autoclave.  

Their results demonstrated that 400 °C was the ideal temperature for maximum light liquid 

yields and that polyolefins thermally degraded at higher temperatures as compared to the 

biomass feedstocks.  Significant synergistic effects were seen when the biomass-to-plastic 

ratio was lower than unity resulting in a higher liquid percentage.  Yuan et al. [34] studied 

synergistic effect during co-pyrolysis of cellulose and high-density polyethylene (HDPE) 

at various ratios for two decomposition phases: cellulose phase and HDPE phase and found 

that mass loss values of mixture were greater than the estimated values confirming synergy 

and proved that synergy was strongest when cellulose-to-HDPE ratio was 1:3.  Also, study 

by Gunasee et al. [35] using cellulose and low-density polyethylene (LDPE) plastic, found 

that positive synergy increasing liquid yield existed under both devolatilization and 

condensation conditions.  Wang et al. [36] studied the synergistic effect demonstrated in 

blends of polylactide (PLA) and various biomass types and found temperature regions 

showing most effect based on the overall devolatization.  Brebu et al. [37] co-pyrolyzed 
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pine cone and polyethylene (PE), polypropylene (PP) and polystyrene (PS) types of plastic 

at 500 °C and found that gas and liquid yields increased while char yield decreased.  

Overall, key factors identified that affect synergy in co-pyrolysis of fiber-plastic are type 

of feedstock and mix-ratio, pyrolysis duration, and reactor temperature [38]. 

Slow co-pyrolysis of cellulose and plastic is proved to be providing beneficial 

effects not only in terms of product yield but also on the quality of oil produced.  Önal et 

al. [39] performed co-pyrolysis of the almond shell and HDPE plastic at 500 °C in a fixed 

bed reactor and reported a synergistic effect on both yield and composition.  They 

concluded that there was a positive synergistic effect of higher HDPE amounts resulting in 

positive synergy, an increase of 26% in Higher Heating Value (HHV), 26% in carbon 

content and 78% in hydrogen.  These positive synergies are consistent with the negative 

effect observed for oxygen (86% reduction).  Chen et al. [40] co-pyrolyzed waste 

newspaper and HDPE plastic in a stationary furnace setup and found synergistic effect 

between temperatures in the range of 400 – 500 °C and observed increased yield, decreased 

viscosity and a significant decrease in total acid number (TAN) compared to theoretical 

data. 

Apart from the mentioned traditional feedstock (biomass) and reactors (circulating 

fluidized bed), researchers also tried using different feedstock like tires and methods like 

auger reactor for co-pyrolysis with biomass.  Martinez et al. [41] conducted a study of 

forest waste and waste tires using a fixed bed reactor and an auger reactor separately to 

compare the effect of type of reactor.  They not only found positive synergy between the 

waste tire and biomass co-pyrolysis but also showed it is more evident in the case of auger 
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reactor.  Further, it was also found that addition of tire waste in this co-pyrolysis increased 

the stability of the oil showing effect on quality.   

Yet, along with mostly positive synergistic effect resulting studies, some literature 

studies also showed negative synergistic effects in slow pyrolysis.  Williams et al. [42] 

investigated yield and composition of co-pyrolysis of oil from fiber-polysterene in a fixed 

bed reactor using catalyst and found a decrease in the oil and significant increase in the 

formation of coke.  Meng et al. [43] studied co-pyrolysis of polypropylene and sawdust in 

a packed bed reactor to understand the effect of temperature on yields and found a negative 

synergistic effect in co-pyrolysis.  According to Xue [44], possible explanation for some 

of these negative synergistic effects is that the plastic decomposes at a higher temperature 

than biomass but melts at around 300ºC which is approximately the decomposition 

temperature for biomass.  Due to this overlap, it is likely that biomass gets covered in the 

melted plastic and thus hindering the process of effective mass transfer.  This may induce 

secondary reaction like decarbonylation and thus increasing solid products generated from 

accumulation and retention of solids from biomass and plastics leading to a negative 

synergy. 

The following paragraphs deal with fast pyrolysis: Comparatively much less work 

has been done on fast co-pyrolysis.  Ojha et al. [33] studied the effect of cellulose-plastic 

mass ratio and pyrolysis temperature using a micro-pyrolyzer.  They found that alcohol 

content increased as the ratio of PP plastic in the PP-biomass mix increased.  Contrast to 

normal, the char yield showed positive synergy in fast pyrolysis which is a more common 

phenomenon in slow pyrolysis instead.  It was attributed to reaction of PP derived vapors 



www.manaraa.com

9 

with biomass char and then subsequent production of aromatic ring compounds that were 

retained in char in solid form.  Chen et al. [45] studied fast pyrolysis of Paulownia (PAW) 

wood and PET plastic using drop-tube fixed bed reactor and found increased experimental 

gas yields compared to theoretical yields with an increase of temperature and PAW mass 

ratio.  Burra and Gupta [46] co-pyrolyzed pinewood with different kinds of plastics like 

PP, Polyethylene terephthalate (PETE), and polycarbonate (BPC) and found that co-

pyrolysis synergistically reduced the char yield.  Chattopadhyay et al. [47] and 

Çepelioğullar et al. [48] showed the gas yield was increased and char was inhibited while 

Xue et al. [49], Yang et al. [50], Ko et al. [51] studies showed that gas yield was inhibited 

in the co-pyrolysis.  Further, Sanchez et al. [52] showed that no synergy effect in present 

on gas yields in pyrolysis and they act as independent systems.  This variety of outcomes 

from various studies demand a better understanding of the synergy effect phenomenon in 

fast co-pyrolysis. 

As indicated above, from both slow and fast co-pyrolysis, there are discrepancies 

between the various studies and it is not clear what are the sources of these discrepancies.  

As synergy may play an essential role in the product yields and their properties, it is of 

great importance to study the existence of synergy in co-pyrolysis.  In order to study 

synergistic effects, in co-pyrolysis one has to ensure that the reactors used would enable 

studying these effects.  The main reactors used in fast pyrolysis are based on circulating 

fluidized bed (CFB) reactors [14].  Recently the MTU group has developed a paddle reactor 

that yieled the same yields as CFB [53], however, it is much simpler and at signficantly 

lower cost.  This reactor will be used in this study. 
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1.4 The paddle reactor 

In auger reactor and paddle reactors pyrolysis (described in detail in 3.2.2), the 

feedstock is continuously fed to a screw/paddle and rotation of screw moves the product to 

the end of the screw through various heating zones.  They are gaining popularity because 

of their simplicity of construction and operation [53].  These reactor also need little or no 

carrier gas thus reducing operational needs.  The process can be very easily controlled by 

just controlling the rotation speed [53].  Also, because of its small footprint compared to 

CFB the capital cost is also reduced.  However, at large scales heat transfer in auger/paddle 

can be a challenge [54].  Also, there is no simple strategy for scaling them up to industrial 

size [55] prompting for more research work. 

This study focuses only on paddle reactors (described in detail in 3.2.2) for fast 

pyrolysis as they previously proved to be good mixing devices in continuous flows of 

powders with the extremely simple operation and low cost.  Much work has been carried 

out to study mixing in various paddle configurations.  Hassanpour et al. [56] modeled a 

paddle mixer by a discrete element method (DEM) to analyze the particle motion within 

the reactor.  He described internal flow fields and mixing patterns and obtained good 

agreement with measurements, indicating that DEM is an appropriate tool for predicting 

particle dynamics in these mixers.  Bohl et al. [57], characterized powder mixing in a 

paddle reactor by measuring flow velocities and comparing them with modeling results 

using finite time Lyapunov exponents.  Recently, Pantaleev et al. [58], carried out the most 

comprehensive investigation on paddle mixing that included measurements supported by 
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DEM simulations, which used the visco-elasto-plastic DEM model developed by the same 

team [59]. 

Although paddles are widely used as mixing devices, surprisingly very few 

attempts have been made to use them for reaction.  Rui et al. [60], carried out for the first 

time high-temperature reaction in a paddle reactor in the year 2012.  They studied fast 

pyrolysis in the temperature range 450-550℃.  However, it is of interest to note that screw 

augers have been used extensively as high-temperature reactors, (for pyrolysis by Day et 

al. [61,62]; Aylón et al. [63]; Martinez et al [41]; Miao et al.  [64]; Haydary et al. [65]; 

Butler et al. [66]; and for gasification by Chun et al. [67].  The common way for heating is 

externally (Garcia-Perez et al. [68]; Kelkar et al. [69]; Ingram et al. [70]; Mohan et al. [25]; 

Pittman et al. [71]).  The main disadvantage of screw augers as high-temperature reactors 

is the slow heating rates (<1 °C/s), which is not suitable for fast reactions such as pyrolysis 

with characteristic times of 1-3 seconds.  Recently, Funke et al. [55,72,73] carried out a 

comprehensive study on the use of twin screws for fast pyrolysis including up-scaling 

considerations. 

A logical approach is to combine the simplicity of the heating method developed 

for simple screw augers with the outstanding mixing portrayed by paddle mixers and use 

of externally heated paddle mixers for continuous fast reaction systems.  This might yield 

in fast heating rates for continuous reacting systems.  As described in previous paragraph, 

in such reactors particles of various diameters are flown and heated by the hot reactor walls 

and react to produce solid, liquid, and gaseous products.  Our research group has already 

developed an externally-heated paddle mixing reactor (1-inch inner diameter of the paddle 
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housing with a throughput of 100-1,500 g/h).  We discovered that to reach the desired high 

heating rates, the shaft where paddles are attached should rotate at frequencies at or above 

200 rpm.  Using this reactor, comprehensive pyrolysis study of about 20 different types of 

feedstock showed that the product compares well with literature data that were obtained 

for fast pyrolysis reactors [53,74].  As essential parameters like heating rate, flow rates and 

method of mixing are well understood from one-inch system.  
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2 Research objective 

Based on literature reviewed on synergistic effects during pyrolysis between fiber 

and plastic materials, both slow and fast co-pyrolysis show discrepancies between the 

various studies and it is not clear what are the sources of these discrepancies.  As synergy 

may play a crucial role in the product yields and their properties, it is important to study 

the existence and the extent of synergy in co-pyrolysis.  The primary objective of this work 

is to study these synergistic effects, in co-pyrolysis of fiber-plastic.  Prior to the study of 

synergistic effect in fiber-plastic blend, the individual constituent feedstocks fiber and 

plastic will be investigated independently. 

The specific objectives of the proposal are to investigate: 

1. The kinetics and product distribution in fast pyrolysis of fiber and plastics. 

2. The effect of chlorine and other minerals on fast pyrolysis of fiber and plastic 

(minerals may result in formation of large amount of lower molecular weight 

species making upgrading difficult [75]). 

3. The synergistic effects in fast co-pyrolysis of fiber-plastic blends under the 

following conditions: (a) with/without chlorine and minerals (b) at various fractions 

of fiber/plastic in the blend, in the range 0.1-0.9. 

To achieve these goals we will use two types of fast pyrolysis reactors:  

1. A batch reactor that we developed for fast pyrolysis, where the majority of the 

experiments will be conducted.  This will provide a large data base as these 

experiments are rather simple and inexpensive.  In these expeiments a sample of 
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~20 g material is inserted into the batch reactor and the liquid products are 

condensed and collected. 

2. A continuous fast pyrolysis paddle reactor that can produce ~8 gal/hr liquid 

product.  To minimize the numbers of experiments in this reactor, we will use the 

batch experiments to provide the pyrolysis parameters and the fiber-plastic blend 

to be tested. 

The following parameters will be used to quantify synergy: (1) liquid yield; (2) 

pyrolysis char, (3) water content in liquid; (4) gas yield;  (5) H/C ratio in the liquid yield; 

(6) oxygen content in the liquid yield; (7) average molecular weight in the liquid yield; (8) 

aromatic molecules; (9) CO; (10) CO2.  Other compounds might be: Levoglucosan, 

saccharides, acetic acid, lactic acid, epoxide, alcohols, ethers, phenols, furans, ketones, 

esters.  
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3 Materials and methods 

3.1 Feedstock material 

Figure 1 (A-D) illustrates the feedstocks that will be studied: (A) fiber waste; (B) 

plastic waste; (C) loose fiber-plastic blend; (D) densified fiber-plastic blend.   

 
Figure 1 CE feedstocks (A) fiber/paper (B) plastic (C) loose fiber-plastic waste-blends 

(D) densified fiber-plastic blend pellets. 
 

The wastes received by CE comprises of a large variety of paper, matrix residuals, 

laminated papers, plastics, and fibers consisting of several chemical impurities (see below 

in Section 5.1).  The following are major obstacles in dealing with thermal treatment of 

organic wastes: 

• Presence of metals that need removal as they might be hazardous or/and damage 

the equipment. 

• Moisture content that can vary from batch to batch. 

• Variety in component distribution in the waste. 

• Hazardous heavy metals present. 

• Existence of hazardous chlorine and potassium needs handling. 

• A large size distribution that affects heat and mass transfer during the process. 
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Following are the common methods that provide solutions that best fits the needs 

for the obstacles discussed above. 

• For metal removal, the waste is first shredded to 3-5-inch size particles by a shear 

grinder.  Ferrous metals are sorted, completely, by strong electro-magnets while 

non-ferrous metals are removed by manual sorting which is currently best method 

based on industry practice. 

• For moisture content, exceeding 7%-mark, natural indoor drying by spreading it on 

the storage floor is used as it requires very inexpensive structures. 

• Variability of feedstock primarily affects two key things: (a) consistency of product 

in terms of parameters like heat content (b) biogenic carbon content in product (if 

required by norms).  As, our feedstock primarily consists of fibers and plastics this 

challenge is addressed by characterizing the incoming feedstock and comparing it 

with the desired product properties.  If the biogenic carbon needs to be boosted 

fibers percent is increased while for heat content more plastic is added.  

• As for the hazardous materials, this study does not use industrial waste that cannot 

be treated for energy applications.  Also, it does not contain high content of heavy 

metals.  These are commonly treated in special facilities at very high costs. 

• Feedstock with large chlorine and potassium content are treated with an efficient 

and economical method where these components are removed in aqueous solution 

after torrefaction discussed below in Section 3.2.3. 

• As most thermal processes require particles to less than certain size (6 mm for this 

work).  The feedstock is shredded/grounded using a hammer mill to < 6 mm size 
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ensuring unhindered heat and mass transfer in the reactor. 

 
Figure 2 Feedstock characterization on quarterly basis from year 2011 to 2017 by CE. 

 

Above described methods have resulted in highly consistent and uniform feedstock 

material.  Figure 2 displays some of the properties of fiber-plastic blends for a period of 

seven years’ time that addresses the criteria set above.  As seen from Figure 2, moisture 

content and ash content are stable at ~3% and 6% respectively.  Energy content is stable at 

26 MJ/kg.  SO2 is in average under 0.3 lb/mmBtu, except on one occasion but is always 

under permitted values.  Mercury is in average 0.009 ppm, except two occasions but is well 

under the EPA permitted values of 0.065 ppm.  However, the main pollutant emission that 

is above EPA permitted value is chlorine, in the range 254-2497 ppm (average of 1162+486 

ppm), well above the EPA permitted value [76]. Thus, it is addressed separately in this 
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methods section.  Overall, CE’s method provides rather consistent and uniform material. 

The characterization results are reported in section 5.1. 

3.2 Methods 

3.2.1 Batch pyrolysis 

Batch pyrolysis was performed using a lab setup as shown in Figure 3.  The setup 

consisted of following key components: (a) a Lindenberg furnace (Model: 

Lindenberg/Blue type BF51828C-1) for heating the feedstock, (b) a metal container for 

pyrolysis (c) a heated transfer line to avoid condensation in (d) a bottle for oil collection 

(d) cooling system consisting of a fan (not shown) and water bath for collection bottle. 

 
Figure 3 Batch pyrolysis schematic. 

 

The batch pyrolysis experiments to produce oil samples were performed using the 

following procedure: The fiber-plastic feedstock to be used was weighed using electronic 

scale (model A&D EK-15KL) with readability of 0.1 g.  The entire assembly was also 

weighed to conduct mass balance to account the weight of any oil condensed in the transfer 

line.  The furnace was set at temperature of 500°C and the transfer line was heated to 250 

°C to avoid condensation of pyrolytic vapors in transfer line.  The transfer line and heater 
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were covered with insulation to avoid loss of heat to surrounding.  The temperatures were 

measured using a J-type thermocouple and controlled using a controller.  The temperatures 

were allowed to reach steady state before the start of experiment.  The collection bottle was 

then weighed, and liquid collected was measured using weight difference at the end of 

experiment. 

During the experiment, the inlet for feedstock was opened and 5 to 10 grams of 

feedstock was dropped inside the container/bomb and inlet was sealed back.  The vapors 

formed from pyrolysis of the feedstock would travel through transfer line to the 

condensation system and would condense in the form of liquid due to the water bath of 

collection bottle and fan.  The non-condensable vapors would be released from the system 

in form of bubbling in the water flask.  The bubbling started ~2-3 seconds after the material 

dropped inside the pyrolysis container.  New fiber/plastic feedstock was added 

approximately 5 minutes after the bubbling stopped.  At the end of experiment, the 

collection bottle was weighed to measure the liquid yield.  The char was measured using 

the weight difference of the bomb before and after the experiment.  The liquid condensed 

in transfer line that did not reach collection bottle was measure using weigh difference of 

transfer line and was added to the liquid yield.  

The batch experiment is a simple experiment that requires less time and operational 

cost as compared to the paddle reactor system and can provide oil from fast pyrolysis 

required for further testing.  To prove that the batch pyrolysis is indeed fast pyrolysis, heat 

transfer analysis was performed on the batch reactor system.  The details of the analysis 

are shown in the 5.2.1 section. 



www.manaraa.com

20 

3.2.2 Continuous paddle reactor pyrolysis 

We are currently building a 4-inch system for this thesis work.  However, MTU 

developed, designed, tested, and operated a 1-inch system that is similar to the current 4-

inch system [77].  This 1-inch system was shipped to Idaho National Lab (INL) and is 

operated by INL.  Some recent experiments were performed in the 1-inch system al INL.  

This section consists of some design aspects and results for the 1-inch system; followed by 

some details on the 4-inch system that is currently in assembly stages.  

The key component of the continuous paddle reactor is the reactor with the mixing 

element.  Our paddle mixer comprises of two mixing elements: (A) cuts in the auger 

flighting and (B) four mixing paddles within each flight pitch.  We found that these features 

to enhance significantly mixing.  The reactor diameter is 2.54 cm with a pitch of 5.08 cm 

and a shaft diameter of 1.27 cm.  The flighting cuts consist of five-equal length segments 

of spacing of 36 degrees each.  

 
Figure 4 Paddle reactor schematic. 

 

Figure 4 shows the reactor configuration and its features.  Within the 36° of the 

flight, ~40% of the flighting area is cut away leading to some material not being conveyed 

Cut flightingMixing paddles
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forward and mixing it with the new materials coming in from the previous pitches.  In 

addition to the flight, four paddles were also placed within each pitch to push the material 

both forward and on sides and to lift and retain the solids.  The paddles are placed at 45° 

to the shaft.  They work as an internal mixing device within each pitch.  The paddles have 

of similar size to the flighting cuts but extend from auger shaft to the same diameter as the 

normal flighting.  Four paddles are placed in each pitch with even spacing in between them.  

Cut flighting’s and paddles improve solids mixing. 

 
Figure 5 Cartoon of paddle reactor system. 

 

Figure 5 shows a cartoon of our paddle reactor system for fast pyrolysis.  The 

feedstock will flow into an agitated feed bin (to prevent bridging) and is flood fed into a 

screw auger.  The feedstock falls into our paddle reactor that is heated by twelve heaters, 

with a thermocouple for each heater that measures the powder temperature at the reactor 

floor.  Each heater has power larger than the heat rate required to heat all powder to the 

required temperature.  The heaters are covered by insulators that does not lose more that 
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5% heat to the surroundings.  The thermocouples are used to control the power of each 

heaters as required. 

 Figure 6, right, shows the heating dynamics and behavior in the 1-inch system in 

a two-stage heating mode.  The temperature along the axial axis of pyrolysis reactor was 

set such that Heaters 1-4 would be at 350 °C (at 350 °C negligible pyrolysis reactions 

occurs), whereas Heaters 5-12 were set at 500 °C, where pyrolysis takes place.  All heaters 

were controlled according to the set points.  Figure 6-Left shows the temperature vs. time 

curve for heaters 1, 4, 5 and 10, from the beginning of the heating.  After the system is 

turned on, it takes ~700 s for the system to reach a steady state after the initial surge due to 

system thermal capacity.  The material is then introduced at ~1300 seconds which causes 

a drop in the temperature, however system recovers in few tens of seconds and achieves 

the steady state again as the feedstock reaches the heater temperature.  From the heater 4 

to heater 5 there is a jump in the heater set temperature from 350 to 500 °C as a result 

temperature at thermocouple 4 and 5 always lie between these two temperatures. 

 
Figure 6 Left - Temperature profiles for heater 1, 4, 5 and 10 in 1-inch system.  Right - 

Temperature distribution vs. axial co-ordinate for 1-inch pyrolysis system. 
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The temperature vs. axial distance for two materials: (1) biomass (2) pure nitrogen 

was plotted as seen in Figure 6-B, A S-shaped curved is formed showing the thermal 

behavior of heaters.  For the 4-inch system, similar thermal behavior is expected, with 

difference only being with higher thermal capacity, thus requiring longer times to reach 

steady state required. 

Apart from heating methods for main pyrolysis reactor described above, system 

consists of separate collection system for products, solid, liquid and gas.  The gas stream 

consisting of condensable bio-oil and non-condensable gases flows through a heated 

transfer line.  It is then passed to a condenser that collects the produced liquid into a sealed 

tank (not shownFigure 7).  The cold non-condensable gases are then passed through a cold-

water bath to collect any remaining bio-oil.  The system is kept inert with a nitrogen stream.  

In order to avoid the secondary reactions, the nitrogen flow rate is set such that residence 

time of gases do not exceed 2 seconds. 

The 4-inch system is shown in Figure 7.  It consists of a bucket elevator which 

transfer the feedstock to the hopper feed-bin consisting an agitation system to avoid any 

kind of bridging in the feed-bin hopper.  The feed is then supplied to the reactor through 

an air-lock which ensures the reactor stays in oxygen-free environment.  All the pyrolysis 

reaction take place in the reactor shown in Figure 8 which consists of a paddle auger (refer 

Figure 8-A) to enhance mixing as well as higher heat transfer similar to the 1-inch system.  

The heating is achieved using 15 band heaters.  The temperature is monitored and 

controlled by 24 different thermocouples approximately spaced 2-inches for each other. 
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Figure 7 Solid-works model showing the design of 4-inch continuous paddle reactor 

system. 

 
Figure 8 (A) The 4-inch reactor showing band heaters and thermocouple connections (B) 

Reactor paddle shaft. 
3.2.3 Chlorine removal 

Waste blends of plastics often contain chloride containing plastics, like polyvinyl 

chloride (PVC) and polyvinylidene chloride (PVDC).  Based on study by Saleh et al. [78], 

Bucket elevator
Feed bin with agitator

Rotary valve as airlock

Rotary valve as airlock

Fast pyrolysis chamber

1st condenser

2nd condenser

Char collector

Radiators

Dosing auger
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it is known that chlorine from these plastic materials is released in the form of hydrochloric 

acid when it is torrefied at 300 oC.  This acid may damage pyrolysis reactors and add cost 

of hydrogen chloride or dioxin removal in aftertreatment [79].   

Traditionally, leaching is used as a method for mineral removal which uses large 

quantities of acids for soaking/washing along with significant amount of processing time 

and corrosive effluent treatment [74].  Based on method developed by Donepudi [74], 

Chlorine removal in this study was done by use of torrefaction and high shear mixing, as 

follows.  

Torrefaction.  Torrefaction involved heating the sample in oxygen-free 

environment at 300°C.  Typically, a sample of around 150 g was used.  Torrefaction 

experiments were carried out at using convection type furnace manufactured by 

Lindenberg (Model: Blue type BF51828C-1).  The oven was preset at 300 °C and was 

allowed to stabilize at the same temperature for ~15 minutes. The furnace was then filled 

with continuous supply of either N2 or CO2 gas to avoid oxidation of the sample during the 

torrefaction.  Once the temperature and the gas flow were stabilized, the weighted sample 

was placed in a pre-weighed aluminum foil tray in the center of the furnace.  For the fiber-

plastic blends the sample weight was ~300 g and the residence time of the sample varied 

from 3 to 120 minutes. 
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Figure 9 (A) Charles Ross & Son Company’s (Model HSM-100-LSK-1) high shear 

mixer used in chlorine removal.  (B) Chlorine filtration setup. 
 

High shear mixing.  A Charles Ross & Son Company high shear mixer (Model 

HSM-100LSK-1) as shown in Figure 9 was used for high shear mixing.  The mixer has 

speed range of 500 to 10,000 rpm.  The mixer mixes the torrefied sample fiber-plastic and 

water vigorously for a specified amount of time to form a homogeneous slurry.  The slurry 

is then filtered using a Whatman filter paper and a vacuum pump.  The separated products 

are weighed, and the water washing is collected separately for the Chlorine analysis 

described in section 4.6. 
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4 Characterization 

4.1 Proximate analysis 

As composition of feedstock has a significant effect on properties of oil generated in 

fast pyrolysis, it is important to characterize physical properties [24]. Table 2 summarizes 

the physical properties and their effect on: the pyrolysis process, upgrading and, the final 

product.  The measured values of these properties are presented as a part of proximate 

analysis section in Table 5 in Current results section. American society for testing and 

materials (ASTM) standards are used for the proximate analysis of the samples.  The 

measurement of moisture content, ash content, volatile matter, fixed carbon, and calorific 

value were based on ASTM E871, ASTM D1102, ASTM D3175, ASTM D3175 and 

ASTM E711 standards respectively.  The final values are calculated based minimum 10 

measurements. 

Table 2 Feedstock physical attributes and their effects on pyrolysis 
Physical property Effect on pyrolysis, upgrading and product. 
Type of feedstock  Conversion efficiency and transportation cost [24]. 
Moisture content Drying, grinding energy, and feeding efficiency [24]. 
Energy density Thermochemical conversion efficiency, storage cost 

and transportation cost [24]. 
Ash content Wear and tear of handling equipment, waste handling 

cost, oil yield, pretreatment cost, bio-oil quality, 
catalyst effect on vapor cracking, phase separation 
[14,80–83]. 

Hydrophobicity Outdoor storage suitability and drying cost [24]. 
 

4.2 Ultimate analysis 

Chemical elements and the heavy metals play an important role in affecting the 

pyrolysis and the yield qualitatively as well as quantitatively.  Thus, it is important to 
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understand the how these chemical compounds and heavy metals affect the process and 

product.  Chlorine and mercury removal is more important in the pyrolysis process. 

However, as seen in current results section no mercury was found in feedstock, but 

Chlorine was found so chlorine removal method was focused separately.  Various elements 

described in Table 3 are measured in ultimate analysis and ash content section in Current 

results. In the ultimate analysis the carbon, hydrogen, and nitrogen percent were measured 

based on ASTM standard test ASTM D5373.  The oxygen content result is based on ASTM 

D3176. 

Table 3 Feedstock chemical attributes and their effects on pyrolysis process and product. 
Physical property Effect on pyrolysis, upgrading and product. 
Chlorine Corrosion from HCl in pyrolysis vapor, slag formation if reacted with 

sodium or potassium, corrosion in combustor based on concentration 
[14,25,84]. 

Mercury Forms poisonous vapors, cause particulate emissions, affect char use.  
Adds gas and oil cleanup [83–85]. 

Lead Forms fly-ash and aerosols.  Adds gas and oil cleanup [83–85]. 
Sulphur Forms H2S and hinders deoxygenation.  Form SO2 in exhaust and corrodes 

surfaces and damages catalyst [14,84]. 
Nitrogen Foul odor and forms NOx [14]. 

 

4.3 Gas chromatography - mass spectrometry (GC-MS) 

GC-MS is an analytical technique consisting of an amalgamation of two different 

techniques namely, gas chromatography and mass spectrometry.  It is primarily used for 

separating closely related component from a chemical mixtures and identification of mass 

spectrums (mass to charge ratio) of a compound at a molecular level.  Figure 10 shows the 

block diagram of a GC-MS setup.  GC section is composed mainly of an injection port, GC 

oven, carrier gas supply tank and regulator, and detector while the MS section consists of 

an electron ionization unit, magnetic lens, and an electron multiplier detector. 
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Figure 10 Gas Chromatography-Mass Spectrometry (GC-MS) block diagram. 

 

The principle for gas chromatography is the partition coefficient caused at higher 

temperature flows.  The detailed working is as follows: A volatile and thermally stable 

organic compound which is to be analyzed is mixed in solvent is injected into the 

chromatograph.  Normally, a noble gas like helium is used to purge this mix through a GC 

column which is a long tube with very small diameter.  For the volatilization of the sample 

and solvent mix, the GC column is heated in a GC oven.  In the GC column, the gas forms 

the mobile phase while the liquid coating on solid support forms the stationary phase.  The 

molecules and compounds soluble in the stationary phase liquid are slowed down and their 

emission from the GC tube is delayed.  The detector at the end of the GC column records 

the time of arrival of each compound. 

In the mass spectrometry (MS) section, the process starts with ionization of an 

analyte received from the GC column using the electron ionization unit.  Analyte loses an 

electron in the process of ionization resulting in the generation of the molecular ion.  This 

molecular ion is excited using a beam and allowed to reach a higher energy state. 
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Further, due to continued receival of excessive energy, the molecular ion splits into 

smaller daughter ions that have a lower mass to charge (m/z) ratios.  The positive ions 

produced in the electron stream due to splitting, are then sent towards the mass analyzer 

which differentiates them according to their mass.  These ions sorted based on their m/z 

ratio then hit the electron multiplier detector which generates a signal and sends it to the 

computer. 

The computer, based on received signal, generates a graph with multiple peaks.  

The tallest peak is called base peak and other peaks are calculated as a percent of the base 

peak.  For this work, GC-MS was performed using Thermo-scientific FOCUS-ISQ and 

anthracene was used as internal standard.  Separation was achieved using a RTx-5MS 

capillary column. 

4.4 Electro-spray ionization - mass spectrometry (ESI-MS) 

Like the GC-MS system, ESI-MS system is an amalgamation of electro spray 

ionization and mass spectrometer.  The primary advantage of ESI-MS is that it can analyze 

a very large range of sample compared to GC.  It is more suitable for compounds with high 

polarity and high thermal instability.  Figure 11 demonstrates a block diagram of an ESI-

MS setup block diagram. 

 
Figure 11 ESI-MS block diagram. 
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Electrospray ionization is used to produce ions using an electrospray from the 

capillary shown above, where a high voltage application produces small particles called 

aerosols.  The analyte is forced into a capillary cone called Taylor cone using a pump at 

high pressure to form above mentioned aerosols.  The solvent in the droplets progressively 

evaporates leaving analyte increasingly more charged.  When charge exceeds the Rayleigh 

limit the droplet explodes.  Due to explosion the droplet dissociates leaving a stream of 

charged ions.  This ion stream then enters the mass spectrometer.  The mass spectrometer 

works like MS explained in GC-MS section above. 

4.5 Fourier transform infrared spectrometry (FTIR) 

FTIR is used for the identification of various chemical functional groups.  It was 

method developed to overcome the slow scanning process of dispersive instruments for 

chemical functional group identification.  Figure 12 show a block diagram of FTIR setup.  

It mainly consists of four key components, namely, infrared source, interferometer, 

detector, and a computer for fast Fourier transform calculation (FFT). 

 
Figure 12 Fourier transform infrared spectrometry block diagram (FTIR). 
 

The source emits an infrared beam from a black-body source.  It passes through an 

aperture (not shown) which controls the amount of light that can reach the sample.  It is 
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followed by an optical device called interferometer.  This interferometer usually comprises 

of a beam splitter which divides the signal from source in two different beams.  These 

beams are bounced off from two different flat mirrors one stationery and other moving.  

These bounced signals are collected behind beam splitter which produces a signal called 

interferogram comprised of the signal resulting from interference of two beams.  It has 

unique property that it is composed of all the infrared frequencies. 

This interferogram beam is projected on the sample.  Based on the property of 

sample and type of analysis method, certain frequencies are absorbed into the sample.  The 

rest are detected by a detector and final measurement is made.  As frequency spectrum is 

needed for the analysis, this interferogram is digitized and sent to fast Fourier transform 

(FFT) program on a computer.  FFT program generates a frequency spectrum ready for 

analysis.  In this study, the FTIR process was performed using Thermo-Fisher scientific 

Nicolet iS10 FTI-R spectrometer. 

4.6 Photometry for chloride measurement 

Chloride measurement was done using Milwaukee Instruments, MI414 model 

Chloride professional photometer as shown in Figure 13.  To make sure the chloride ppm 

is within the measurable limits of the photometer the chloride mixed sample was diluted 

by a factor of hundred using distilled water.  Two cuvettes to be used for the experiment 

were filled with 10 ml of distilled water each.  First of the two cuvettes was used as a blank 

sample while other was used for the sample to be tested for Cl. 0.5 ml reagent-1 

(Thiocyanate and Mercury reagent) was added to both cuvettes and was thoroughly swirled 

for 30 s.  Following it, 0.5 ml of reagent-2 (Nitric Acid) was added to both cuvettes and 
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the cuvettes were swirled for another 30 seconds.  Now, the blank sample was placed in 

the photometer for the first blank measurement after which the photometer was zeroed for 

calibration purpose.  After zeroing, then the liquid sample cuvette was placed in the 

photometer which displayed the chloride content in the liquid sample in ppm.  

 
Figure 13  Photometer used for Chloride measurement. 

 

Total Chlorine in the sample solid phase was measured using the ASME D-42081 

standard.  The method comprised of the following steps: firstly, the weighed sample was 

burned completely in a combustion bomb at oxygen pressure on ~3 MPa.  2% Na2CO3 

solution was then added to the bomb and reaction was allowed to complete. The bomb was 

then washed using measured quantity of water.  These washings were collected, and their 

ionic strength was adjusted using NaNO3 solution.  Finally, using potentiometric titrator 

(Metrohm 916 Ti-Touch) total chlorine content of the solid material is determined by 

measuring the potential of the solution with a chlorine ion-selective electrode with silver 

nitrate solution. 
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5 Current results 

5.1 Feedstock characterization 

Proximate analysis.  The feedstock 

proximate analysis results shown in Table 4 are for 

the 40% plastic and 60% fiber/paper blend.  The 

values were obtained by averaging results from a 

minimum of ten different batches of feedstock produced.  As mentioned earlier, the values 

of moisture, ash content, volatile matter, fixed carbon, and calorific value were measured 

based on ASTM E871, ASTM D1102, ASTM D3175, ASTM D3175 and ASTM E711 

respectively. 

It can be observed from the results that 

feedstock consists of about 3% moisture and 6% ash 

showing that the feedstock is very dry and has a low ash 

content.  Also, the high percentage of volatiles make it 

a good feedstock for pyrolysis process.  The HHV is in 

the range of bituminous coals [86]. The moisture 

content is also very low as compared to coal [86,87]. 

The details of the contents of ash are described below separately in Table 5.  The ash 

analysis was done conforming to the ASTM D3682 standard. 

It can be noted from Figure 14 that the ash constitutes primarily of silicon dioxide, 

aluminum oxide, calcium oxide, titanium dioxide and magnesium oxide contributing to 

total ~90% of the ash. 

Table 4 Proximate analysis of CE 
waste-blend feedstock. 

Component Values ± SD 
Moisture (%) 3.3 ± 0.5 
Ash (%) 6.0 ± 0.6 
Volatiles (%) 83.5 ± 2.6 
Fixed Carbon (%) 7.2 ± 2.0 
HHV, kJ/kg 26.10 ± 1.05 

Table 5 Characterization of ash. 
Ash constituent % 
SiO2 33±18 
Al2O3 27±11 
CaO 21±12 
TiO2 7.2±3.4 
MgO 3.0±3.0 
Na2O 1.6±0.7 
Fe2O3 0.9±0.9 
K2O 0.6±0.4 
BaO 0.2±0.2 
MnO2 0.02±0.01 
Others 2.8±1.4 
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Figure 14 Ash content distribution. 

 

Ultimate analysis.  Table 6 shows the results for the ultimate analysis of the 40% plastic 

and 60% fiber/paper blend.  The values were obtained by averaging results from at least 

ten different batches of feedstock produced.  The carbon, hydrogen, and nitrogen percent 

are based on standard test based on ASTM D5373 method.  The oxygen content result is 

based on ASTM D3176. 

Table 6 Ultimate analysis of feedstock. 
Component Percentage (%) 
Carbon 55.4±1.8 
Hydrogen 7.9±0.3 
Nitrogen 0.3±0.1 
Oxygen 27.1±1.6 
Sulfur 0.2±0.1 

 

The blend has low sulfur and nitrogen content which is lower than the powder river 

basin (PRB)  coal [87].  The other elements like Chlorine and Mercury found in the blend 

are enlisted in Table 7. 

Table 7 Other elements found in the feedstock. 
Other elements ppm ± SD 
Chlorine 1162±487 
Fluorine 75±75 
Mercury 0.01±0.01 
Tin 2.9±0.9 
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Arsenic 1.1±0.9 
Beryllium 0.3±0.8 
Chromium 2.2±1.2 
Cobalt 0.21±0.16 
Lead 1.1±1.4 
Nickel 0.81±0.57 
Selenium 1.5±1.8 

 

It can be noted that the element of mercury is mostly zero.  It is important result, it 

is a major health and environmental hazard [88] along with other issues described in Table 

3. Chlorine amounts found in the feedstock are noticeable and thus feedstock needed 

treatment.  The treatment methods were discussed previously, and the details are discussed 

in Chlorine removal section. 

5.2 Heat transfer analysis 

5.2.1 Batch 

Pyrolysis experiments for this study were carried out in a batch reactor by 

introducing feedstock in a container (bomb) placed in convective furnace at 500 °C, with 

the initial temperature of the particle, To, at ambient temperature.  The material was placed 

in the container in furnace which was stationary.  It is assumed that temperature of the 

pyrolysis container wall is equal to temperature of furnace after equilibrium was achieved.  

In this case, the sample was heated by heat transported from the hot walls at temperature 

(Tw) to the particle surface by convection; the heat was then transported into the particle by 

conduction. 

To determine the regime that best fits the system behavior, we start the analysis 

with Biot number (Bi) and thermal Thiele modulus (M); the former is related to the heating 
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regime of the particle, and the latter relates to the propagation of the torrefaction reaction 

within the particle.  The Bi and M, which are defined as: 

𝐵𝐵𝐵𝐵 = ℎ
𝜆𝜆/𝐿𝐿𝑐𝑐

    (1) 

𝑀𝑀 = 𝑅𝑅†

𝜆𝜆/(𝑐𝑐𝑝𝑝𝐿𝐿𝑐𝑐2)
    (2) 

where h is the convective heat transfer coefficient, λ is the particle thermal conductivity, Lc 

is the particle characteristic length, R† is the pyrolysis reaction rate within the particle, cp 

is the particle heat capacity, and ρ is particle density.  The parameters required to determine 

Bi and M from equations (1) and (2) are not easy to determine as the material is not well 

defined (due to mix of several types of fibers/plastic) and therefore, we can only provide 

an estimate. 

The value of heat transfer coefficient, h, was selected to be 10 (W/m2-K) and was 

the closest to the flow conditions prevailing in the furnace [89].  The value for thermal 

conductivity, λ, varies between 0.15 (W/m-K) for PVC, to 0.38 (W/m-K) for polyethylene; 

for biomass and fibers the values range in 0.03-0.29 (W/m-K) [90]. In this study, the 

average density was  800 (kg/m3) for the loose fiber/paper material and 850 (kg/m3) for the 

plastic [91].  Heat capacity was taken from the literature to yield an acceptable value of 

1400 (J/kg-K) for fiber/paper and ~1400 (ranges from 1300-1670) for plastic.  Table 8 

summarizes all properties required for the determination of Bi and M, yielding values for 

(i) Bi of ~0.05 (ii) M of ~1.4.  The values for Bi in the range ~0.1 indicate that the rate of 

heat transfer by convection from the furnace walls to the particle was lower than the rate 

of heat transfer into the particle.  The value of M indicates that the reaction rate was higher 
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than the heat transfer into the particle.  Therefore, this analysis indicates reaction 

propagation was governed by the convection from the container walls to the surface of 

particle, after which the particle temperature equilibrates instantly. 

Table 8 Estimated values for the parameters to determine the Bi and M. 
Parameter Value 
h, W/m2-K 10 
λ for plastic material, W/m-K 0.15-0.38 
λ for fiber material, W/m-K 0.03-0.29 
R† for fiber and plastic material, kg/m3-s 600 
ρ for fiber material, kg/m3 800 
ρ for plastic material, kg/m3 850 
cp, J/kg-K 1400 
Lc thickness, m 0.0005 
Bi  0.05 
M  ~1.4 

 

Establishing that the pyrolysis reaction rate was controlled by the convective heat 

transfer from the wall to the particle surface and that the particle temperature was uniform 

always, means that the reaction propagates with the rate of ramp-up of the particle 

temperature.  To calculate the particle temperature, the equation of the heat rate, dQ(t)/dt, 

from the walls to the particle surface was needed to be solved, which was equal to 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= ℎ𝐴𝐴[𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑠𝑠(𝑡𝑡)]  (3) 

where Tw and Ts(t)=T(t) are wall and particle surface (or particle) temperatures, 

respectively.  Q(t) is the heat required to increase the particle temperature, or 

𝑄𝑄(𝑡𝑡) = 𝑚𝑚𝑐𝑐𝑝𝑝[𝑇𝑇(𝑡𝑡) − 𝑇𝑇𝑜𝑜] + 𝑚𝑚ℎ𝑟𝑟 (4) 

where m and cp are particle mass and specific heat capacity, respectively, To is the particle 

core temperature, which is also equal to the initial temperature of the particle, and hr is 

enthalpy of reaction.  It was a challenge to find values for hr as the pyrolyzed material was 
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not well defined, it comprises fibers (mostly cellulose) and a large variety of plastic 

materials.  Cellulose pyrolysis in the 25-500 °C temperature range, starts as an endothermic 

reaction and continues as an exothermic reaction.  Enthalpies of reaction for plastic blends 

in the same temperature range were always positive and vary in the range (12.55-147.86 

J/kg), which is smaller than the value of cp(T-To) in Eq. (4).  Thus, for simplification, this 

term was ignored.  Introducing Eq. (4), without hr, into Eq. (3) and integration from Tw to 

T(t) yields  

𝑇𝑇𝑤𝑤−𝑇𝑇(𝑡𝑡)
𝑇𝑇𝑤𝑤−𝑇𝑇𝑜𝑜

= 𝑒𝑒−𝑡𝑡/𝜏𝜏    (5) 

where τ is a characteristic time, defined as  

𝜏𝜏 = 𝑚𝑚𝑐𝑐𝑝𝑝
ℎ𝐴𝐴

    (6) 

For the loose material (slab) it is τslab=dρcp/2h (d is slab thickness).  Rearrangement of Eq. 

(5) yields 

𝑇𝑇∗(𝑡𝑡) = 1 − (1 − 𝑇𝑇𝑜𝑜
𝑇𝑇𝑤𝑤

)𝑒𝑒−𝑡𝑡/𝜏𝜏  (7) 

T* is defined as  

𝑇𝑇∗(𝑡𝑡) = 𝑇𝑇(𝑡𝑡)
𝑇𝑇𝑤𝑤

    (8) 

The required values for determining τ, Eq. (6), for each case are given.  Introducing 

these values in Eq. (6) yields τslab=28 (s) for fiber and τslab=30 (s) for plastic, the subscript 

slab is for the loose material.  Figure 15 shows the calculation of the temperature from Eq. 

(8) indicating that the particle reached 400 °C (where significant reaction takes place) after 

50 (s), which is equivalent to 8 °C/s, very close to the value required for fast pyrolysis. 
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Figure 15 Temperature transients for batch reactor (fiber/plastic material) based on 

model with characteristic time of ~28 (s). 

5.2.2 Continuous paddle 

To show that the particles are entrained in the gas flow in our paddle reactor, the 

experiment was carried out in a paddle reactor.  It was found that the suspension of particles 

depends on two main factors: 

A) Size of the particles 

B) The rotation speed of the paddles 

As seen Figure 16, an experiment with the sawdust/biomass particles of size 

between 500µm to 3 mm (mostly less than 1 mm) was performed at the rotation frequency 

of paddles varying from few rpm to 200 rpm.  Up to 100 rpm, the particles were mostly 

creeping on the reactor floor.  After exceeding rotation speeds of ~100 rpm, the particles 

started suspending in the air partially.  Finally, at speed of 175 rpm, all the particles were 

fully suspended.  The gas flow fields were clearly seen in the flow of particles. 
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Figure 16 State of particles at various paddle speeds (suspension). 

 

Considering the small size of particles suspended in gas, if we apply properties of 

fiber and plastic stated in Table 8 to the continuous paddle reactor except that the paddle 

reactor has a very large convective heat transfer coefficient of at least 250 W/m2-K [92]. 

The Bi and M values based on model are ~1 and 0.021, respectively.  Based on Biot number 

value of 1, it can be said that heat transfer rate by conduction is equal to heat transfer by 

convection.  However, as M is equal to 0.021 which is much less than 0.1, the reaction rate 

is much less than the heat conduction rate.  Overall, it can be concluded that reaction 

propagation rate is governed by convection from walls of reactor to the particles.  In this 

case, the rate at which the particles are reacting depends on the convective heat transfer 

from the wall to the particle, as concluded also from the batch reactor, thus the same 

analysis applies here as well, yielding τslab=1.2 (s).  The temperature vs. time curve based 

on model is shown in Figure 17, indicating that the particle reaches 400 °C in < 2 (s), or a 

heating rate of ~200 °C/s.   
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Figure 17 Temperature vs. time plot for continuous paddle reactor based on model. 
 

The above analysis is applicable if the particles were at size in the range 1-3 mm, 

as can be achieved in biomass grinding.  We note that we will flow fiber and plastic flakes 

that are 10×10 mm, with a thickness of <1 mm into the reactor.  We also note that when 

either fiber and plastic flakes are torrefied they become very brittle as seen by Zhuo et al. 

[93] and can be grinded rather easily by the paddles that act as blades.  Indeed, in the 1-

inch reactor (as well as in the batch reactor) the char was in the form of a very fine powder.  

Although this has not been proven in the 4-inch reactor, it is likely to happen and thus we 

expect that this this analysis is valid for these feedstocks as well. 

5.3 Pyrolysis oil 

Pyrolysis oil was produced using the method described in batch pyrolysis section.  

Table 9 shows pyrolysis results for fiber feedstock.  The pyrolysis experiment was at least 

triplicated, and result for liquid and char yield are shown below.  It can be noted that for 

pyrolysis of fiber/paper, liquid yields were on average 50.3% with standard deviation of 

1.0% and char was 26.7%.  The total condensable and non-condensable gas yield can be 
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obtained by subtracting char weight from total feedstock weight.  Thus, for fiber pyrolysis, 

it can be estimated that total condensable + non-condensable gas yield is ~73%. 

Table 9 Pyrolysis oil from fiber feedstock. 
Exp 
# 

Weight of 
feedstock (g) 

Weight of 
liquid (g) 

Liquid 
yield (%) 

Weight of 
char (g) 

Char 
(%) 

1 257.2 129.1 50.2 64.5 25.1 
2 254.5 130.8 51.4 70.6 27.7 
3 259 128 49.4 70.4 27.2   

Average 50.3 
 

26.7   
S. D 1.0 

 
1.4 

 

Similarly, triplicate experiment was performed for the plastic feedstock which 

yielded average char yields of ~10.3%.  Total condensable and non-condensable gas yield 

obtained by char subtraction from feedstock weight is ~89.7%.  This yield from plastic is 

higher than the fiber yield.  Based on few preliminary experiments the liquid yield from 

plastic pyrolysis was ~65%.  The oil obtained from batch pyrolysis is characterized for 

detailed understanding in the following section. 

5.4 Pyrolysis-oil characterization 

5.4.1 Fiber 

As described earlier in batch system pyrolysis method, the fiber-based bio-oil was 

obtained from the fiber/paper obtained from CE which consisted of a variety of cardboard 

and paper.  The batch pyrolysis reactor was maintained at 500 °C and transfer lines were 

maintained at 250 °C to avoid the condensation before the collection system. 

Approximately, 250 grams of feedstock was pyrolyzed in each sample.  Two 

fractions separate fractions as seen in Figure 18 were observed.  One fraction was water 

soluble fraction (WS) and was lighter in color while the other fraction was Water Insoluble 
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fraction (WI) which was more viscous and darker in color.  The experiment was triplicated 

to ensure repeatability of results. 

 
Figure 18 Top fraction (left) and bottom fraction (right) of pyrolysis oil from fiber. 

 

FTIR, HPLC and GC-MS analysis were performed on these samples to understand 

chemical constituents of the bio-oil.  However, as bio-oil is blend of more than 300 

compounds and it is difficult to identify all these compounds. 

5.4.1.1 FTIR  

FTIR spectral analysis was performed for the two different layers of oil separately.  

It provided information on the chemical functional groups present in the bio-oil fractions.  

FTIR spectroscopy revealed that the top aqueous layer contained hydroxyl (~3500 cm-1), 

methylene/methyl (2800-2980 cm-1), carboxylic acid (~1715 cm-1), unconjugated 

ketone/aldehyde carbonyl (1730-1700 cm-1), and conjugated ketone/aldehyde carbonyl 

(1700-1675 cm-1) groups [94]. 
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Figure 19 FTIR spectra of pyrolysis bio-oil top and bottom layers. 

 

The bottom organic layer FTIR spectra (refer Figure 19) also showed the same 

bands as above, but additionally, it also shows bands assigned to lignin (1610, 1517, and 

1280 cm-1) and is most likely pyrolytic lignin [95].  

5.4.1.2 HPLC 

High Performance Liquid Chromatography (HPLC) was performed on bio-oil.  

Analysis of top layer showed that it contained levoglucosan (3.3%), furfuryl alcohol 

(6.3%), formic acid (4.3%), acetic acid (3.7%), propionic acid (0.5%), hydroxymethyl-

furfural (0.5%), and furfural (0.3%).  The GC-MS analysis also confirmed the identity of 

these compounds.  Table 10 shows results from HPLC indicating that 20%+2% of the bio-

oil originates from a few groups in cellulose: Levoglucosan, furfuryl alcohol, formic Acid, 

and acetic acid. 

Table 10 Compounds from cellulose. 
Compounds in bio-oil ug/mg 
 Ave SD 
Glucose 0.3 0.1 
Xylose 3.0 0.7 
Levoglucosan 33.2 2.8 
Furfuryl alcohol 63.3 3.1 
Formic Acid 42.7 13 
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Acetic acid 37.2 2.1 
Propionic Acid 6.9 1.2 
Hydroxy-methyl-furfural 4.8 0.5 
Furfural 2.7 0.3 
Total 194 23 

5.4.1.3 GC-MS 

 
Figure 20 GC-MS analysis of fiber/paper pyrolysis oil from bottom layer. 

 

GC-MS was used to analyze the volatile components in the bio-oil bottom layer.  

This fraction contained mainly lignin derivatives (55%) with the major compounds being 

methyl-phenol, methyl styrene, acetophenone, guaiacol, methyl-guaiacol, ethyl guaiacol, 

and isoeugenol.  This mixture is consistent with woody biomass pyrolysis products.  

Alkanes (C10-C21) and volatile carbohydrate derivatives (28%) were also detected.  The 

alkanes are likely to originate from polyethylene or wax. 

GC-MS analysis not only confirmed the identity of the compounds found in the top 

layer by HPLC but also showed several carbohydrate degradation products (3-methyl-1,2-

cyclopentanedione, dianhydro-hexoses, 2,3-dimethyl-2-cyclopenten-1-one, 2-methyl-2-

cyclopentenone, and methyl-guaiacol). 
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5.4.1.4 ESI-MS 

The limitation of GC-MS results is that only volatile and semi volatile compounds 

can be analyzed, which accounts for only a portion of the bio-oil.  ESI-MS is successfully 

used to characterize pyrolysis bio-oil [96] to obtain the average molar mass (Mn and Mw) 

of bio-oil samples. 

 
Figure 21  Negative ion ESI-MS of bio-oil top layer (cellulose) and bottom layer (lignin) 

showing mass spectrum (Top) in m/z= 100 to m/z=1500 range.  (Bottom) overlap in 
m/z= 100 to m/z=250 range. 

 

The Mw and Mn of the bio-oil top layer was determined by negative ion ESI-MS 

(refer Figure 21).  The Mw was 1009 g/mol and Mn was 672 g/mol.  These results clearly 

show that the products were mono- to oligomeric compounds.  The major peaks observed 
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in the negative ion spectrum ([M-H]-) include m/z at 161 (C6H10O5, levoglucosan), 125 

(C6H6O3, hydroxy-methyl-furfural), and 143 (C6H8O4, dianhydro-hexosan), which 

supports the HPLC findings. 

Negative ion ESI-MS of the bio-oil bottom layer was also employed and gave Mw 

and Mn values of 801 and 460 g/mol.  Again, this shows that the bottom bio-oil layer 

contains a range of oligomeric products.  The major peaks observed in the negative ion 

spectrum ([M-H]-) include m/z at 109, 137, 151, 163, 179, and 193 were tentatively 

assigned to benzenediol (or methylfurfural), methyl-guaiacol, ethyl-guaiacol, isoeugenol, 

coniferyl-alcohol, and propenyl-syringol, respectively and support the GC-MS findings.  

These results are also consistent with literature [97,98].  

 
Figure 22 Cumulative mass (m/z) from range of 100 to 300 showing inversion of lignin 

and cellulose production trend after m/z of 180. 
 

Figure 22 show the accumulative mass intensities (m/z) for cellulose and lignin 

layers.  It can be noted that in range of 150 to 180 the amount of cellulose produced is 

much more than the amount of lignin.  However, the trend completely reverses in the range 

of 180-300, where the amount of lignin produced is much higher than the amount of 

cellulose produced. 
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5.4.2 Plastic 

5.4.2.1 GC-MS 

GC-MS analysis for the plastic samples obtained from the CE plastic blends is shown in 

Figure 23.  Triplication was done to ensure repeatability of results.  85 peaks were detected 

in the sample.  Trichlorobenzene (14.19 m/z) was used as internal standard.  To find the 

similarity between the plastic derived oil and the diesel fuel used in industry the GC-MS 

results of standard diesel analysis (refer Figure 24) were compared with the plastic derived 

bio-oil. The comparison Figure 25 clearly showed that ~ 60% to 65% of the plastic derived 

bio-oil composition is similar to that of diesel fuel with most matching compounds seen in 

C8 to C24 region. 

 
Figure 23 GC-MS (TIC) of bio-oil from plastic feedstock. 
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Figure 24 GC-MS (TIC) of diesel sample. 

 
Figure 25 Comparison of GC-MS of plastic oil and diesel. 

5.4.2.2 Chlorine removal 

The chlorine removal was done by doing torrefaction at 300 °C followed by a high 

shear mixing as described in chlorine removal section.  Figure 26 (left) shows results for 

the mass loss of plastic in the torrefaction.  Figure 26 (right) shows the high shear mixing 

times vs.  chloride removed from original sample in ppm.  Although there are differences 
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between two transients the trends are similar and within the experimental error.  The results 

clearly show that high shear method clearly removed chlorine from the torrefied sample.  

It should be noted that attempts to remove chlorine by high shear mixer for un-torrefied 

plastic failed as the material did not grind. 

 
Figure 26 (Left) Mass loss for plastic during torrefaction at 300°C (Right) Chlorine 

removal vs. high shear mixing time. 

5.4.3 Fiber-plastic blend 

5.4.3.1 FTIR 

The CE waste mix plus fiber (20 random pieces selected) was analyzed by FTIR 

spectroscopy to determine their chemical identity with spectra library matching.  The mix 

was shown to be comprised of three cellulose/paper, three polypropylene (PP), three 

polyethylene (PE), four polyethylene terephthalate (PET), silicone, three cellulose/silicone 

mix, two paper/acrylate mix and one nylon samples.  A composite FTIR spectrum is shown 

Figure 27 shows the major bands associated with PE, PP, PET, and paper.  No characteristic 

bands at 610 cm-1 (C-Cl stretch) and 1425 cm-1 (C-H2 bending) were observed for 

polyvinylchloride. 
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All the samples had C-H stretching bands at assigned to methyl (2960 cm-1 and 

2870 cm-1) and methylene (2916 cm-1 and 2850 cm-1) groups mainly associated with PP 

and PE plastic.  The O-H stretching band 3100-3600 cm-1 was present in all samples and 

progressively decreased in intensity upon the extent of torrefaction due to dehydration 

reactions.  A broad carbonyl (C=O) band at 1690-1750 cm-1 was observed and assigned to 

mainly an ester in linkage in PET and acrylate and an amide linkage in nylon.  A small 

band at 1505 cm-1 was assigned to lignin from paper.  The spectral region between 1000 

and 1070 cm-1 has been assigned to C–O stretching in wood cellulose and hemicellulose 

and decreased in intensity with torrefaction mass loss.  All samples were shown to have 

cis- and trans-vinylene bands at 727 cm-1 and 974 cm-1, respectively.  

 
Figure 27 FTIR spectra of CE-fiber mix and ground/screened (425-850 µm) torrefied 

(10, 20 and 42% mass loss) densified material. 

5.4.3.2 Chlorine content 

First step in chlorine removal was torrefaction at 300 °C.  The torrefaction result of plastic-

fiber waste blend is shown in Figure 28 (left).  Mass loss starts around 3 minutes and 

approaches 50% after 30 minutes.  After torrefaction, mass loss vs. time curve shows the 

torrefaction behavior.  High shear experiments of torrefied material followed the 

torrefaction for chlorine removal and aqueous extracts were obtained, which were filtered 
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and measured for chloride in the solution and chlorine in the solid powder.  Figure 28 

(Right) shows chloride in solid filtrate after high shear and chlorine in aqueous solution. 

 
Figure 28 (left) Mass loss vs. time (right) chloride in solid filtrate after high shear and 

chlorine in aqueous solution. 
 

There was a large scatter in the experiments originating from the fact that in these 

experiments, the samples were small (2-3 grams) and the composition may differ 

significantly in its content and may not well represent the actual case.  Nevertheless, there 

was a clear trend: (i) in the aqueous solution there was little-to-no chloride at zero mass 

loss (no torrefaction); (ii) the chloride in the aqueous solution increases gradually until 

~25% mass loss, after which it stays constant at an asymptotic value of 2043±207 ppm; 

(iii) chlorine in the solid phase has a value of 2031±129 at zero mass loss, then decreases 

gradually to ~10% of the initial value. 
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6 Future work 

Heat transfer model for fast-pyrolysis in batch reactor was provided,  demonstrating 

that it can be used for fast pyrolysis experiments and the results are comparable to 

continuous reactor can be achieved.  The effectiveness of chlorine removal method using 

torrefaction and high shear mixing was proven.  For characterization of pyrolysis oil 

produced in batch reactor, analytical methods of GC-MS, FTIR, ESI-MS and HPLC were 

used to identify the constituent compounds.  It was found that pyrolysis oil produced from 

fiber/paper has two different fractions with top fraction consisting mostly cellulose and 

bottom fraction consisting lignin.  Based on FTIR, common bands in both layer like 

hydroxyl, methylene/methyl, carboxylic acid, unconjugated and conjugated 

ketone/aldehyde carbonyl groups were identified with exception of lignin related 

compound band which was observed only for bottom layer.  Also, other common 

compounds like levoglucosan, furfuryl alcohol, formic acid, acetic acid, propionic acid, 

hydroxymethyl-furfural, and furfural, levoglucosan, hydroxy-methyl-furfural, etc. were 

identified and verified using the other mentioned analytical methods.  For pyrolysis oil 

produced from fast pyrolysis of plastic, it was found that it had 60-65% compounds like 

the diesel fuel.  

This following paragraph restates the general objectives presented in Section 2.  

The final goal of this workplan is investigating the synergistic effect in co-pyrolysis of 

fiber plastic feedstock.  The broader plan involves study of fiber and plastic feedstock 

individually followed by a study of fiber-plastic blend.  The key steps involved in fulfilling 
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these objectives are elaborated below with respect to the key parameters needed for 

achieving these individual objectives: 

Objective 1: Investigate kinetics and product distribution in fast pyrolysis of fiber 

and plastics. 

1. kinetics:  

To study the kinetics, two different reactors will be used: batch fast pyrolysis 

reactor and continuous paddle reactor.  The focus for this work will be on the batch fast 

pyrolysis reactor.  The experiments in this type of reactor will use an improved batch 

pyrolysis reactor.  This improved reactor will consist of two key types of apparatuses: (1) 

fast pyrolysis apparatus (2) measurement apparatus  

The fast pyrolysis apparatus will consist of a setup with following key components 

(a) pyrolysis container (bomb), (b) heaters for heating the container, (c) high speed mixing 

mechanism (d) condensation and oil collection unit, and (e) bubbling mechanism 

(scrubbing) for release of incondensable gases.  The measurement apparatus will include 

the following key components: (a) thermocouple for temperature measurement inside the 

batch pyrolysis container, (b) pressure sensor following the oil collection system and (c) 

gas analyzer to measure non-condensable gases like CO and CO2.  

To investigate the kinetics in the fast pyrolysis process in improved batch pyrolysis 

reactor experiments for the measurement of pyrolysis temperature, heat transfer rate and 

reaction rates will be designed.  The experiments will have a similar setup as shown in 

Figure 3 with an addition of mixing mechanism in the pyrolysis container (bomb), a purge 
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gas mechanism and various sensors as listed above.  The basic design for the experiment 

is described in the following paragraphs. 

The key parameters which will be focused on are (a) heat transfer rate, (b) pyrolysis 

temperature, (c) reaction rate, and (d) vapor residence time.  The heating rate ensures if the 

process is fast pyrolysis process.  The rotation speed of the mixing blade will primarily 

govern this rate as higher mixing speeds increase the heat transfer rates.  The increased 

heat transfer rates will decrease the time needed for the start of reaction as well as 

completion of reaction.  The time at which reaction starts and ends can be distinguished 

with its effect on pressure.  Thus, the pressure transient from the sensor located after the 

condensation system will be important indicator of the times.  As seen in Figure 29 it is 

anticipated that the pressure change will follow a Gaussian distribution with width of 

distribution showing the times required for the reaction.  With the increase in rotation speed 

of the mixer the heat transfer rates would increase, and this will be reflected in the shrinking 

of the distribution along with curve shifting to left as seen in Figure 29.  With start and end 

times of the reaction the reaction rates can be calculated.  This will also help in studying 

the effect of mixing speed which is an important operational parameter for the batch as 

well as the continuous paddle reactor. 
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Figure 29 Effect of heating rate in P instantaneous vs time plot. 

 

The next parameter that will be investigated is the temperature of the pyrolysis.  The 

temperature inside the batch reactor will be set using the controller and the temperature 

will be measured using a thermocouple inside the pyrolysis container (reactor bomb).  

The temperature transient will enable the study of effect of temperature on the kinetics. 

The other parameter that will be studied is residence time of the pyrolytic vapors 

formed after the reaction.  It is important to have small residence times to avoid the 

secondary reactions of the vapors.  The vapor residence time in this improved batch reactor 

will be controlled using a flow of a non-reacting purge gas like nitrogen or carbon dioxide.  

With the increase of purge gas flow rate, the residence time of pyrolytic vapors can be 

reduced.  The mass flow rate can be measured using flow-meter or calculated based on 

time required for purge gas to pass through the length of reactor. 

2. for product distribution:  

Fast pyrolysis produces mainly liquid, solids (char) and non-condensable gas 

yields.  To understand the product distribution quantification of liquid, solid and gaseous 

yields will be done as follow: (a) the liquid yield will be measure by using weight difference 
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of liquid collection bottle before and after the experiment (b) water percent in the oil will 

also be measured potentially using a Karl Fisher method (c) the solid yield will be measured 

by measuring the solid reminder in the container after every experiment (d) the percentage 

of the incondensable gases will be measured and then analyzed using a gas analyzer for the 

detailed product formation.  

After measurement of product distribution, the liquid fractions (pyrolysis oil) will 

be analyzed in detail for identification of major compounds and chemical functional groups 

present in the pyrolysis oil using GC-MS, ESI-MS, FTIR and HPLC.  Additionally, a well-

studied biomass like Poplar or Arundo Donax will be pyrolyzed in the batch reactor to 

establish a benchmark for properties. 

Objective 2: Investigate the effect of chlorine and other minerals in fast pyrolysis 

of fiber and plastic.  To investigate the effect of fiber and chlorine the pyrolysis experiments 

will be done using two different feedstocks: (a) untreated feedstock (containing chlorine 

and minerals) and (b) chlorine free feedstock.  Initially, minerals and ash analysis will be 

performed on feedstock (K, Cl, Na, Ca, Mg, Fe and Al) before the chlorine removal.  The 

chlorine would be removed using the removal method described in section 3.2.3.  Untreated 

feedstock would be initially characterized followed by characterization of pyrolysis oil 

produced from it.  All the tests described in product distribution section will be conducted.  

For the treated feedstock the chlorine removal parameters like torrefaction temperature and 

high shear mixing speeds will be investigated using the combination of various temperature 

and shear mixing speeds.  Also, the use of a base solution like NaOH will be implemented 
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to study the effect.  Selective feedstock with best chlorine and mineral removal results will 

be further used for the pyrolysis procedure.  

Objective 3: Investigate the synergistic effects in fast co-pyrolysis of fiber-plastic 

blends: (a) with/without chlorine and minerals (b) at various fractions of fiber/plastic in the 

blend, in the range 0.1-0.9.  As described in objective 2, two type of fiber-plastic blends 

will be used (a) with chlorine and minerals (b) without chlorine and minerals.  The 

synergistic effect of co-pyrolysis in the batch reactor will be investigated for above 

mentioned materials using the parameters as follows: (a) CO2 an CO gas measurements: 

Change in the yields of gases like CO2 an CO can be good indicators of the synergy.  Thus, 

gas analyzer would be used to quantify these gases for on-line understanding of the 

synergy.  (b) operational parameters: Operational parameters of the pyrolysis reactor like 

temperature of heater, residence time based on purge gas flow rate will be varied and their 

effect on the yields as well as composition of the product from synergistic point will be 

investigated.  (c) heating rates: Heating rate is based on rotation speed of mixing 

mechanism in the improved batch reactor.  The effect of rotation speed of mixing 

mechanism (heating rate) will be investigated on synergy. 

The product parameters that will be measured to study the synergistic effect will 

include but not limited to liquid yields, pyrolysis char yields, water content in liquid, gas 

yield, H/C ratio in liquid yield, oxygen content, average molecular weight in liquid yields, 

aromatic molecules, viscosity, heating values and acidity.  The major compounds that will 

characterized for liquid oils will be levoglucosan, saccharides, acetic acid, lactic acid, 

epoxide, alcohols, ethers, phenols, furans, ketones, esters. 
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Additionally, to compare these results with a well-studied feedstock, biomass like 

poplar or Arundo Donax will potentially be used as a co-pyrolysis feedstock in the batch 

reactor to establish a benchmark for above stated properties.  
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